Links with finite $n$–quandles
Autor: | Jim Hoste, Patrick D. Shanahan |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Fundamental group
branched cover link 010103 numerical & computational mathematics 01 natural sciences Mathematics::Algebraic Topology Combinatorics Mathematics - Geometric Topology Mathematics::Quantum Algebra knot FOS: Mathematics 0101 mathematics Quotient Mathematics quandle n-quandle 010102 general mathematics Geometric Topology (math.GT) Multiplication table Mathematics::Geometric Topology Knot theory Knot group 57M27 57M25 Coset High Energy Physics::Experiment Geometry and Topology Peripheral subgroup Knot (mathematics) |
Zdroj: | Algebr. Geom. Topol. 17, no. 5 (2017), 2807-2823 |
Popis: | We prove a conjecture of Przytycki which asserts that the $n$-quandle of a link $L$ in the 3-sphere is finite if and only if the fundamental group of the $n$-fold cyclic branched cover of the 3-sphere, branched over $L$, is finite. 16 pages, 4 figures, minor revisions in Sections 1-4, new Section 5 added which enumerates all links in $S^3$ with a finite $n$-quandle for some $n$, references added and updated |
Databáze: | OpenAIRE |
Externí odkaz: |