Semiconductor industry cycles: Explanatory factors and forecasting

Autor: Mathilde Aubry, Patricia Renou-Maissant
Přispěvatelé: Centre de recherche en économie et management (CREM), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols (METIS), Université Pierre et Marie Curie - Paris 6 (UPMC)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), EconomiX, Université Paris Nanterre (UPN)-Centre National de la Recherche Scientifique (CNRS), Louise-Rose, Naïla, Université Pierre et Marie Curie - Paris 6 (UPMC)-École Pratique des Hautes Études (EPHE), Normandie Université (NU)-Normandie Université (NU)-Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC), Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)
Rok vydání: 2014
Předmět:
Zdroj: 31st Annual International Symposium on Forecasting
31st Annual International Symposium on Forecasting, Jun 2011, Prague, Czech Republic
Economic Modelling
Economic Modelling, 2014, 39, pp.221-231. ⟨10.1016/j.econmod.2014.02.039⟩
Economic Modelling, Elsevier, 2014, 39, pp.221-231
HAL
Economic Modelling, Elsevier, 2014, 39, pp.221-231. ⟨10.1016/j.econmod.2014.02.039⟩
ISSN: 0264-9993
DOI: 10.1016/j.econmod.2014.02.039
Popis: International audience; This paper aims to suggest the best forecasting model for the semiconductor market. A wide range of alternative modern econometric modeling approaches have been implemented, and a large variety of criteria and tests have been employed to assess the out-of-sample forecasting accuracy at various horizons. The results suggest that if a VECM can be an interesting source of information, the Bayesian models are superior forecasting tools compared to univariate and unrestricted VAR models. However, for decision makers a spectral method could be a useful tool, which can be easily implemented. In addition, MS-AR models make it possible to obtain valuable forecasts on turning-points in order to adjust the programming of heavy capital and research investments.
Databáze: OpenAIRE