Gated Skip-Connection Network with Adaptive Upsampling for Retinal Vessel Segmentation

Autor: Huixia Yao, Shengxin Tao, Yun Jiang, Jing Liang
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Sensors, Vol 21, Iss 6177, p 6177 (2021)
Sensors (Basel, Switzerland)
Sensors
Volume 21
Issue 18
ISSN: 1424-8220
Popis: Segmentation of retinal vessels is a critical step for the diagnosis of some fundus diseases. Methods: To further enhance the performance of vessel segmentation, we propose a method based on a gated skip-connection network with adaptive upsampling (GSAU-Net). In GSAU-Net, a novel skip-connection with gating is first utilized in the extension path, which facilitates the flow of information from the encoder to the decoder. Specifically, we used the gated skip-connection between the encoder and decoder to gate the lower-level information from the encoder. In the decoding phase, we used an adaptive upsampling to replace the bilinear interpolation, which recovers feature maps from the decoder to obtain the pixelwise prediction. Finally, we validated our method on the DRIVE, CHASE, and STARE datasets. Results: The experimental results showed that our proposed method outperformed some existing methods, such as DeepVessel, AG-Net, and IterNet, in terms of accuracy, F-measure, and AUCROC. The proposed method achieved a vessel segmentation F-measure of 83.13%, 81.40%, and 84.84% on the DRIVE, CHASE, and STARE datasets, respectively.
Databáze: OpenAIRE