Popis: |
To determine the role of apparent diffusion coefficient (ADC) histogram analysis in the identification of MYCN-amplification status in neuroblastomas.We retrospectively evaluated imaging records from 62 patients with neuroblastomas (median age: 15 months (interquartile range (IQR): 7-24 months); 38 females) who underwent magnetic resonance imaging at our institution before the initiation of any therapy or biopsy. Fourteen patients had MYCN-amplified (MYCNA) neuroblastoma. Histogram parameters of ADC maps from the entire tumour was obtained from the baseline images and the normalised images. The Mann-Whitney U test was used to compare the absolute and normalised histogram parameters amongst neuroblastomas with and without MYCN-amplification. Receiver operating characteristic (ROC) curves and area under the curves (AUC) were generated for the statistically significant histogram parameters. Cut-offs obtained from the ROC curves were evaluated on an external validation set (n-15, MYCNA-6, F-7, age 24 months (10-60)). A logistic regression model was trained to predict MYCNA by combining statistically significant histogram parameters and was evaluated on the validation set.MYCN-amplified neuroblastomas had statistically significant higher maximum ADC and lower minimum ADC than non-amplified neuroblastomas. They also demonstrated higher entropy, variance, energy, and lower uniformity than non-amplified neoplasms (p0.05). Energy, entropy, and maximum ADC had AUC of 0.85, 0.79, and 0.82, respectively.Whole tumour ADC histogram analysis of neuroblastomas can differentiate between tumours with and without MYCN-amplification. These parameters can help identify areas for targeted biopsies or can be used to predict subtypes of these high-risk tumours before biopsy results are available.• MYCN-amplification significantly affects treatment decisions in neuroblastomas. • MYCN-amplified neuroblastomas had significantly different ADC histogram metrics as compared to tumours without amplification. • ADC histogram metrics can be used to predict MYCN-amplification status based on imaging. |