On Semi-Supervised LF-MMI Training of Acoustic Models with Limited Data

Autor: Irina Illina, Imran Sheikh, Emmanuel Vincent
Přispěvatelé: Speech Modeling for Facilitating Oral-Based Communication (MULTISPEECH), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Natural Language Processing & Knowledge Discovery (LORIA - NLPKD), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), COMPRISE, Grid'5000, European Project: 825081,H2020,COMPRISE(2018), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)
Rok vydání: 2020
Předmět:
Zdroj: INTERSPEECH
INTERSPEECH 2020
INTERSPEECH 2020, Oct 2020, Shanghai, China
DOI: 10.21437/interspeech.2020-2242
Popis: International audience; This work investigates semi-supervised training of acoustic models (AM) with the lattice-free maximum mutual information (LF-MMI) objective in practically relevant scenarios with a limited amount of labeled in-domain data. An error detection driven semi-supervised AM training approach is proposed, in which an error detector controls the hypothesized transcriptions or lattices used as LF-MMI training targets on additional unlabeled data. Under this approach, our first method uses a single error-tagged hypothesis whereas our second method uses a modified supervision lattice. These methods are evaluated and compared with existing semi-supervised AM training methods in three different matched or mismatched, limited data setups. Word error recovery rates of 28 to 89% are reported.
Databáze: OpenAIRE