Compatibility of Gauß maps with metrics
Autor: | Boris Kruglikov, Vladimir S. Matveev, Jost-Hinrich Eschenburg, Renato Tribuzy |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Mathematics - Differential Geometry
Pure mathematics 53A05 53A07 53A10 49Q05 53N10 Riemannian manifold Mathematics - Analysis of PDEs Computational Theory and Mathematics Differential Geometry (math.DG) Compatibility (mechanics) Immersion (mathematics) Local map FOS: Mathematics Geometry and Topology Mathematics::Differential Geometry Analysis Mathematics Analysis of PDEs (math.AP) |
Popis: | We give necessary and sufficient conditions on a smooth local map of a Riemannian manifold $M^m$ into the sphere $S^m$ to be the Gauss map of an isometric immersion $u:M^m \to R^n$, $n=m+1$. We briefly discuss the case of general $n$ as well Comment: 14 pages, no figures |
Databáze: | OpenAIRE |
Externí odkaz: |