Spatial Correlation of Gene Expression Measures in Tissue Microarray Core Analysis

Autor: Mathieu Emily, Didier Morel, Raphael Marcelpoil, Olivier François
Přispěvatelé: TIMB, Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525 (TIMC-IMAG), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
Rok vydání: 2005
Předmět:
Zdroj: Computational and Mathematical Methods in Medicine
Computational and Mathematical Methods in Medicine, Hindawi Publishing Corporation, 2005, 6 (1), pp.33-39. ⟨10.1080/10273660500035795⟩
ISSN: 1607-8578
1027-3662
1748-670X
1748-6718
DOI: 10.1080/10273660500035795
Popis: International audience; Tissue microarrays (TMAs) make possible the screening of hundreds of different tumour samples for the expression of a specific protein. Automatic features extraction procedures lead to a series of covariates corresponding to the averaged stained scores. In this article, we model the random geometry of TMA cores using voronoi tesselations. This formalism enables the computation of indices of spatial correlation of stained scores using both classical and novel approaches. The potential of these spatial statistics to correctly discriminate between diseased and non-diseased cases is evaluated through the analysis of a TMA containing samples of breast carcinoma data. The results indicate a significant improvement in the breast cancer prognosis.
Databáze: OpenAIRE