Métodos de aprendizado de máquina para inventário de elementos de vias de trânsito

Autor: Johny Marques Borges Ribeiro
Přispěvatelé: Alves, Raulcézar Maximiano Figueira, Souza, Jefferson Rodrigo de, Fernandes, Henrique Coelho, Pessin, Gustavo
Rok vydání: 2021
Předmět:
Zdroj: Repositório Institucional da UFU
Universidade Federal de Uberlândia (UFU)
instacron:UFU
DOI: 10.14393/ufu.di.2021.110
Popis: FAPESP - Fundação de Amparo a Pesquisa do Estado de São Paulo Com o avanço da tecnologia e o custo das tecnologias dos sistemas avançados de assistência ao condutor (ADAS) diminuindo, a adoção desses sistemas se torna mais popular, onde tanto os carros de luxo como também os carros mais populares já tem acesso a esses sistemas. Nessa realidade, os governos necessitam fazer a manutenibilidade dos sinais de trânsito que compõem a malha rodoviária, uma vez que esse sinais são utilizados como entrada para os ADAS. Este trabalho descreve os métodos tanto para mapeamento de lombadas quanto para criação de inventários dos sinais de trânsito. São comparadas técnicas de aprendizado de máquina e arquiteturas de redes convolucionais para a detecção e classiĄcação de lombadas e sinais de trânsito respectivamente. Os resultados deste trabalho demonstram a viabilidade do método proposto, alcançando 96% de acurácia na classificação de lombadas utilizando o algoritmo Random Forest, e com 94% de acurácia na classiĄcação dos sinais de trânsito utilizando a arquitetura Faster RCNN. Due to recent technological advancements, the cost of advanced driver assistance sys- tems (ADAS) technologies has decreased signiĄcantly, contributing to its widespread adoption in vehicles of all price ranges. In this reality, governments need to maintain traffic signs that compose the road network, since these signs are used as input to the ADAS. This work describes methods for both mapping speed bumps and creating road signs inventories as well. Machine learning techniques and convolutional network archi- tectures are compared for detection and classiĄcation of speed bumps and traffic signs respectively. Results of this work demonstrate the viability of the proposed method, reaching 96% of accuracy in the classiĄcation of speed bumps using Random Forest al- gorithm, and 94% of accuracy in the classiĄcation of traffic signs using Faster RCNN architecture. Dissertação (Mestrado)
Databáze: OpenAIRE