Characterizing and computing weight-equitable partitions of graphs
Autor: | Aida Abiad, Christopher Hojny, Sjanne Zeijlemaker |
---|---|
Přispěvatelé: | Mathematics, Digital Mathematics, Combinatorial Optimization 1, EAISI Foundational |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
Numerical Analysis
Mathematics::Combinatorics Algebra and Number Theory SPECTRAL PROPERTIES Eigenvalue Cograph Weight-equitable partition COGRAPHS Mathematics and Statistics EIGENVALUES Computer Science::Discrete Mathematics FOS: Mathematics Mathematics - Combinatorics Discrete Mathematics and Combinatorics Combinatorics (math.CO) Geometry and Topology |
Zdroj: | LINEAR ALGEBRA AND ITS APPLICATIONS Linear Algebra and Its Applications, 645, 30-51. Elsevier |
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2022.03.003 |
Popis: | Weight-equitable partitions of graphs, which are a natural extension of the well-known equitable partitions, have been shown to be a powerful tool to weaken the regularity assumption in several well-known eigenvalue bounds. In this work we aim to further our algebraic and computational understanding of weight-equitable partitions. We do so by showing several spectral properties and algebraic characterizations, and by providing a method to find coarse weight-equitable partitions. |
Databáze: | OpenAIRE |
Externí odkaz: |