Maximal depth property of finitely generated modules

Autor: Ahad Rahimi
Rok vydání: 2018
Předmět:
Noetherian
13C14
13C15
13E05
13D45

Pure mathematics
Property (philosophy)
010103 numerical & computational mathematics
Commutative Algebra (math.AC)
01 natural sciences
FOS: Mathematics
Computer Science::General Literature
Finitely-generated abelian group
0101 mathematics
Mathematics::Representation Theory
ComputingMilieux_MISCELLANEOUS
Mathematics
Algebra and Number Theory
Mathematics::Commutative Algebra
Computer Science::Information Retrieval
Applied Mathematics
010102 general mathematics
Astrophysics::Instrumentation and Methods for Astrophysics
Local ring
Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)
Mathematics - Commutative Algebra
Associated prime
TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES
ComputingMethodologies_DOCUMENTANDTEXTPROCESSING
DOI: 10.48550/arxiv.1802.07596
Popis: Let $(R,\mathfrak{m})$ be a Noetherian local ring and $M$ a finitely generated $R$-module. We say $M$ has maximal depth if there is an associated prime $\mathfrak{p}$ of $M$ such that depth $M=\dim R/\mathfrak{p}$. In this paper, we study finitely generated modules with maximal depth. It is shown that the maximal depth property is preserved under some important module operations. Generalized Cohen--Macaulay modules with maximal depth are classified. Finally, the attached primes of $H^i_{\mathfrak{m}}(M)$ are considered for $i
Comment: 11 pages
Databáze: OpenAIRE