Meta-Learning for Fast Cross-Lingual Adaptation in Dependency Parsing
Autor: | Anna Langedijk, Verna Dankers, Phillip Lippe, Sander Bos, Bryan Cardenas Guevara, Helen Yannakoudakis, Ekaterina Shutova |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Popis: | Meta-learning, or learning to learn, is a technique that can help to overcome resource scarcity in cross-lingual NLP problems, by enabling fast adaptation to new tasks. We apply model-agnostic meta-learning (MAML) to the task of cross-lingual dependency parsing. We train our model on a diverse set of languages to learn a parameter initialization that can adapt quickly to new languages. We find that meta-learning with pre-training can significantly improve upon the performance of language transfer and standard supervised learning baselines for a variety of unseen, typologically diverse, and low-resource languages, in a few-shot learning setup. Add additional results (Appendix D) - Cosmetic updates for camera-ready version ACL 2022 |
Databáze: | OpenAIRE |
Externí odkaz: |