Asymptotically Simple Solutions of the Vacuum Einstein Equations in Even Dimensions
Autor: | Piotr T. Chrusciel, Michael T. Anderson |
---|---|
Rok vydání: | 2005 |
Předmět: |
Mathematics - Differential Geometry
Physics 010308 nuclear & particles physics 010102 general mathematics FOS: Physical sciences Statistical and Nonlinear Physics General Relativity and Quantum Cosmology (gr-qc) Invariant (physics) 01 natural sciences General Relativity and Quantum Cosmology Differential Geometry (math.DG) 0103 physical sciences Minkowski space FOS: Mathematics Einstein equations 0101 mathematics Mathematical Physics Mathematical physics |
Zdroj: | Communications in Mathematical Physics. 260:557-577 |
ISSN: | 1432-0916 0010-3616 |
DOI: | 10.1007/s00220-005-1424-4 |
Popis: | We show that a set of conformally invariant equations derived from the Fefferman-Graham tensor can be used to construct global solutions of the vacuum Einstein equations, in all even dimensions. This gives, in particular, a new, simple proof of Friedrich's result on the future hyperboloidal stability of Minkowski space-time, and extends its validity to even dimensions. 25pp |
Databáze: | OpenAIRE |
Externí odkaz: |