Repairing Reed-Solomon Codes via Subspace Polynomials

Autor: Son Hoang Dau, Thi Xinh Dinh, Olgica Milenkovic, Tran Thi Luong, Han Mao Kiah
Rok vydání: 2021
Předmět:
Zdroj: IEEE Transactions on Information Theory. 67:6395-6407
ISSN: 1557-9654
0018-9448
DOI: 10.1109/tit.2021.3071878
Popis: We propose new repair schemes for Reed-Solomon codes that use subspace polynomials and hence generalize previous works in the literature that employ trace polynomials. The Reed-Solomon codes are over $\mathbb {F}_{{q}^{\ell }}$ and have redundancy ${{r}} = {{n}}-{{k}} \geq {{q}}^{{m}}$ , $1\leq {{m}}\leq \ell $ , where ${{n}}$ and ${{k}}$ are the code length and dimension, respectively. In particular, for one erasure, we show that our schemes can achieve optimal repair bandwidths whenever ${{n}}={{q}}^\ell $ and ${{r}} = {{q}}^{{m}}$ , for all $1 \leq {{m}} \leq \ell $ . For two erasures, our schemes use the same bandwidth per erasure as the single erasure schemes, for $\ell /{{m}}$ is a power of ${{q}}$ , and for $\ell ={{q}}^{{a}}$ , ${{m}}={{q}}^{{b}}-1>1$ ( ${{a}} \geq {{b}} \geq 1$ ), and for ${{m}}\geq \ell /2$ when $\ell $ is even and ${{q}}$ is a power of two.
Databáze: OpenAIRE