Hessian Riemannian gradient flows in convex programming *

Autor: Felipe Alvarez, Jérôme Bolte, Olivier Brahic
Přispěvatelé: Departamento de Ingeniería Matemática [Santiago] (DIM), Universidad de Chile = University of Chile [Santiago] (UCHILE)-Centre National de la Recherche Scientifique (CNRS), Groupe de recherche en économie mathématique et quantitative (GREMAQ), Centre National de la Recherche Scientifique (CNRS)-École des hautes études en sciences sociales (EHESS)-Institut National de la Recherche Agronomique (INRA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Departamento de Ingenierı́a Matemática, Universidad de Chile [Santiago], GREMAQ, Centre National de la Recherche Scientifique (CNRS)-École des hautes études en sciences sociales (EHESS)-Institut National de la Recherche Agronomique (INRA)-Université Toulouse 1 Capitole (UT1)-Centre National de la Recherche Scientifique (CNRS)-École des hautes études en sciences sociales (EHESS)-Institut National de la Recherche Agronomique (INRA)-Université Toulouse 1 Capitole (UT1)
Jazyk: angličtina
Rok vydání: 2004
Předmět:
Hessian matrix
0209 industrial biotechnology
Control and Optimization
Geodesic
Hessian Riemannian metric
0211 other engineering and technologies
02 engineering and technology
34D05
Legendre type convex function
90C25
Hamiltonian system
convex and linear programming
symbols.namesake
020901 industrial engineering & automation
Differential inclusion
Gradient flow
Liapounov functional
FOS: Mathematics
Applied mathematics
quasi-convex mini-mization
Mathematics - Optimization and Control
Mathematics
ex-istence
021103 operations research
Applied Mathematics
34A12
Bregman distance
Legendre transform coordinates
global convergence
Lagrange and Hamilton equations AMS classification: 34G20
Rate of convergence
Optimization and Control (math.OC)
Convex optimization
Variational inequality
symbols
[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
Convex function
Zdroj: SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2004, 43 (2), pp.477-501. ⟨10.1137/S0363012902419977⟩
SIAM JOURNAL ON CONTROL AND OPTIMIZATION
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
ResearcherID
ISSN: 0363-0129
1095-7138
DOI: 10.1137/S0363012902419977⟩
Popis: International audience; Motivated by a constrained minimization problem, it is studied the gradient flows with respect to Hessian Riemannian metrics induced by convex functions of Legendre type. The first result characterizes Hessian Riemannian structures on convex sets as those metrics that have a specific integration property with respect to variational inequalities, giving a new motivation for the introduction of Bregman-type distances. Then, the general evolution problem is introduced and a differential inclusion reformulation is given. A general existence result is proved and global convergence is established under quasi-convexity conditions, with interesting refinements in the case of convex minimization. Some explicit examples of these gradient flows are discussed. Dual trajectories are identified and sufficient conditions for dual convergence are examined for a convex program with positivity and equality constraints. Some convergence rate results are established. In the case of a linear objective function, several optimality characterizations of the orbits are given: optimal path of viscosity methods, continuous-time model of Bregman-type proximal algorithms, geodesics for some adequate metrics and projections of ˙ q-trajectories of some Lagrange equations and completely integrable Hamiltonian systems.
Databáze: OpenAIRE