Hemodynamic Responses Elicited by Systemic Injections of Flavin Adenine Dinucleotide in Anesthetized Rats

Autor: Kevin Sandock, Tom P. Robertson, James N. Bates, Jonathan E. Graves, Maleka P. Hashmi-Hill, Stephen J. Lewis
Rok vydání: 2007
Předmět:
Zdroj: Journal of Cardiovascular Pharmacology. 50:94-102
ISSN: 0160-2446
DOI: 10.1097/fjc.0b013e31805c162a
Popis: Flavin adenine dinucleotide (FAD) elicits an endothelium-dependent vasodilation in isolated rat mesenteric beds via activation of P2Y-purinoceptors. The aims of this study were to characterize the hemodynamic responses elicited by systemic injections of FAD and flavin mononucleotide (FMN) in anesthetized rats and to determine the role of nitric oxide synthase (NOS), cyclooxygenase, P2Y/P2X-purinoceptors, and muscarinic receptor in these responses. FAD (0.05-1.0 micromol/kg, iv) elicited dose-dependent decreases in heart rate (HR), mean arterial blood pressure (MAP), and hindquarter vascular resistance (HQR), whereas it elicited an initial increase and then a decrease in mesenteric (MR) vascular resistance. The FAD-induced responses were not affected by the P2Y/P2X-purinoceptor antagonist suramin, the muscarinic receptor antagonist methyl-atropine, or the cyclooxygenase inhibitor indomethacin. The vasodilator actions of FAD were unaffected by the NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME), whereas the bradycardia elicited by higher doses of FAD were diminished by L-NAME. FMN did not elicit hemodynamic responses in the absence or presence of L-NAME. In summary, FAD-induced bradycardia depends, in part, on the activation of NOS, whereas the vasodilator actions of FAD are not obviously due to newly synthesized nitrosyl factors. These findings and those in our companion manuscript support the concepts that the adenine moiety confers biological activity to FAD, which releases preformed pools of nitrosyl factors.
Databáze: OpenAIRE