Influence of Silica Nanoparticle Density and Flow Conditions on Sedimentation, Cell Uptake, and Cytotoxicity
Autor: | Hamidreza Ghandehari, Zachary B Barber, Seyyed Pouya Hadipour Moghaddam, Mostafa Yazdimamaghani |
---|---|
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
Materials science Surface Properties Diffusion Cell Culture Techniques Drug Evaluation Preclinical Pharmaceutical Science 02 engineering and technology Mice 03 medical and health sciences Toxicity Tests Drug Discovery Surface roughness Animals Particle density Cytotoxicity Sedimentation Silicon Dioxide 021001 nanoscience & nanotechnology RAW 264.7 Cells 030104 developmental biology Flow conditions Chemical engineering Nanotoxicology Drug delivery Nanoparticles Molecular Medicine 0210 nano-technology |
Zdroj: | Molecular Pharmaceutics. 15:2372-2383 |
ISSN: | 1543-8392 1543-8384 |
DOI: | 10.1021/acs.molpharmaceut.8b00213 |
Popis: | Careful evaluation of the toxicological response of engineered nanomaterials (ENMs) as a function of physicochemical properties can aid in the design of safe platforms for biomedical applications including drug delivery. Typically, in vitro ENM cytotoxicity assessments are performed under conventional static cell culture conditions. However, such conditions do not take into account the sedimentation rate of ENMs. Herein, we synthesized four types of similar size silica nanoparticles (SNPs) with modified surface roughness, charge, and density and characterized their cytotoxicity under static and dynamic conditions. Influence of particle density on sedimentation and diffusion velocities were studied by comparing solid dense silica nanoparticles of approximately 350 nm in diameter with hollow rattle shape particles of similar size. Surface roughness and charge had negligible impact on sedimentation and diffusion velocities. Lower cellular uptake and toxicity was observed by rattle particles and under dynamic conditions. Dosimetry of ENMs are primarily reported by particle concentration, assuming homogeneous distribution of nanoparticles in cell culture media. However, under static conditions, nanoparticles tend to sediment at a higher rate due to gravitational forces and hence increase effective doses of nanoparticles exposed to cells. By introducing shear flow to SNP suspensions, we reduced sedimentation and nonhomogeneous particle distribution. These results have implications for design of in vitro cytotoxicity assessment of ENMs and suggest that among other factors, sedimentation of nanoparticles in toxicity assessment should be carefully considered. |
Databáze: | OpenAIRE |
Externí odkaz: |