Peirce-evanescent baric identities

Autor: Richard Varro
Přispěvatelé: Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Journal of Algebra
Journal of Algebra, Elsevier, 2020, 564, pp.49-97. ⟨10.1016/j.jalgebra.2020.08.006⟩
ISSN: 0021-8693
1090-266X
DOI: 10.1016/j.jalgebra.2020.08.006⟩
Popis: Peirce-evanescent baric identities are polynomial identities verified by baric algebras such that their Peirce polynomials are the null polynomial. In this paper procedures for constructing such homogeneous and non homogeneous identities are given. For this we define an algebraic system structure on the free commutative nonassociative algebra generated by a set T which provides for classes of baric algebras satisfying a given set of identities similar properties to those of the varieties of algebras. Rooted binary trees with labeled leaves are used to explain the Peirce polynomials. It is shown that the mutation algebras satisfy all Peirce-evanescent identities, it results from this that any part of the field K can be the Peirce spectrum of a K-algebra satisfying a Peirce-evanescent identity. We end by giving methods to obtain generators of homogeneous and non-homogeneous Peirce-evanescent identities that are applied in several univariate and multivariate cases.
Databáze: OpenAIRE