On the graph labellings arising from phylogenetics
Autor: | Kaie Kubjas, Weronika Buczyńska, Jarosław Buczyński, Mateusz Michałek |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Graph labellings
Phylogenetic semigroup Semigroup generators Lattice cone Hilbert basis Conformal block algebras Cavender-Farris-Neyman model 2-state Jukes-Cantor model Series (mathematics) Phylogenetic tree Degree (graph theory) Betti number Semigroup General Mathematics Combinatorics Mathematics - Algebraic Geometry Phylogenetics FOS: Mathematics Graph (abstract data type) Mathematics - Combinatorics Quantitative Biology::Populations and Evolution 20M14 (Primary) 14M25 20M05 52B20 13P25 14D21 (Secondary) Combinatorics (math.CO) ddc:510 Algebraic Geometry (math.AG) Mathematics |
Zdroj: | Central European Journal of Mathematics |
Popis: | We study semigroups of labellings associated to a graph. These generalize the Jukes-Cantor model and phylogenetic toric varieties defined by Buczy\'nska. Our main theorem bounds the degree of the generators of the semigroup by g+1 when the graph has first Betti number g. Also, we provide a series of examples where the bound is sharp. Comment: 17 pages, 13 figures; v2: presentation improved, results generalised to arbitrary graphs (not only trivalent); to appear in Central European Journal of Mathematics |
Databáze: | OpenAIRE |
Externí odkaz: |