Crowdsensing IoT Architecture for Pervasive Air Quality and Exposome Monitoring: Design, Development, Calibration, and Long-Term Validation

Autor: Paolo D’Auria, Adrian M. Ionescu, Grazia Fattoruso, Saverio De Vito, Antonio Del Giudice, Tiziana Polichetti, F. Formisano, Elena Esposito, M. Salvato, Gerardo D’Elia, Sergio Ferlito, Girolamo Di Francia, Ettore Massera
Přispěvatelé: De Vito, S., Esposito, E., Massera, E., Formisano, F., Fattoruso, G., Ferlito, S., Del Giudice, A., D'Elia, G., Salvato, M., Polichetti, T., D’Auria, P., Ionescu, Adrian M
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Sensors
Volume 21
Issue 15
Sensors (Basel, Switzerland)
Sensors, Vol 21, Iss 5219, p 5219 (2021)
ISSN: 1424-8220
DOI: 10.3390/s21155219
Popis: A pervasive assessment of air quality in an urban or mobile scenario is paramount for personal or city-wide exposure reduction action design and implementation. The capability to deploy a high-resolution hybrid network of regulatory grade and low-cost fixed and mobile devices is a primary enabler for the development of such knowledge, both as a primary source of information and for validating high-resolution air quality predictive models. The capability of real-time and cumulative personal exposure monitoring is also considered a primary driver for exposome monitoring and future predictive medicine approaches. Leveraging on chemical sensing, machine learning, and Internet of Things (IoT) expertise, we developed an integrated architecture capable of meeting the demanding requirements of this challenging problem. A detailed account of the design, development, and validation procedures is reported here, along with the results of a two-year field validation effort.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje