Singularities and semistable degenerations for symplectic topology
Autor: | Aleksey Zinger, Mark McLean, Mohammad Farajzadeh Tehrani |
---|---|
Rok vydání: | 2018 |
Předmět: |
High Energy Physics - Theory
Pure mathematics 010102 general mathematics FOS: Physical sciences General Medicine 01 natural sciences Mathematics - Algebraic Geometry Areas of mathematics High Energy Physics - Theory (hep-th) Mathematics - Symplectic Geometry 0103 physical sciences FOS: Mathematics Symplectic Geometry (math.SG) 53D05 53D45 14N35 Gravitational singularity 010307 mathematical physics 0101 mathematics Algebraic Geometry (math.AG) Mathematics::Symplectic Geometry Smoothing Symplectic geometry Mathematics |
Zdroj: | Comptes Rendus Mathematique. 356:420-432 |
ISSN: | 1631-073X |
DOI: | 10.1016/j.crma.2018.02.009 |
Popis: | We overview our recent work defining and studying normal crossings varieties and subvarieties in symplectic topology. This work answers a question of Gromov on the feasibility of introducing singular (sub)varieties into symplectic topology in the case of normal crossings singularities. It also provides a necessary and sufficient condition for smoothing normal crossings symplectic varieties. In addition, we explain some connections with other areas of mathematics and discuss a few directions for further research. 18 pages, 2 figures |
Databáze: | OpenAIRE |
Externí odkaz: |