Feynman graphs and related Hopf algebras

Autor: Andrzej Horzela, Karol A. Penson, Pawel Blasiak, Allan I. Solomon, Gérard Duchamp
Přispěvatelé: Laboratoire d'Informatique de Paris-Nord (LIPN), Université Paris 13 (UP13)-Institut Galilée-Université Sorbonne Paris Cité (USPC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique des Liquides (LPTL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2006
Předmět:
Computer Science - Symbolic Computation
FOS: Computer and information sciences
History
Pure mathematics
Discrete Mathematics (cs.DM)
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
Structure (category theory)
FOS: Physical sciences
G.2.1
Symbolic Computation (cs.SC)
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
Matrix symmetric functions
ACM G2.1
MCS 05E99
01 natural sciences
010305 fluids & plasmas
Education
symbols.namesake
[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
0103 physical sciences
FOS: Mathematics
Mathematics - Combinatorics
Feynman diagram
0101 mathematics
Mathematical Physics
Mathematics
Boson
[INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC]
Quantum Physics
Analytic substitutions
Series (mathematics)
010102 general mathematics
Mathematical Physics (math-ph)
Hopf algebra
Computer Science Applications
Feynman Graphs
Hopf algebras
symbols
Combinatorics (math.CO)
Boson strings
Quantum Physics (quant-ph)
Computer Science - Discrete Mathematics
Zdroj: Journal of Physics: Conference Series. 30:107-118
ISSN: 1742-6596
1742-6588
Popis: In a recent series of communications we have shown that the reordering problem of bosons leads to certain combinatorial structures. These structures may be associated with a certain graphical description. In this paper, we show that there is a Hopf Algebra structure associated with this problem which is, in a certain sense, unique.
Databáze: OpenAIRE