Mapping urban fingerprints of odonyms automatically extracted from French novels

Autor: Yves-François Le Lay, Noémie Boeglin, Thierry Joliveau, Mauro Gaio, Pierre-Olivier Mazagol, Ludovic Moncla
Přispěvatelé: Data Mining and Machine Learning (DM2L), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Environnement Ville Société (EVS), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École nationale supérieure d'architecture de Lyon (ENSAL)-École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-École Nationale des Travaux Publics de l'État (ENTPE)-Université Jean Monnet [Saint-Étienne] (UJM)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Université Lumière - Lyon 2 (UL2)-École normale supérieure - Lyon (ENS Lyon), Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Environnement, Ville, Société (EVS), École normale supérieure de Lyon (ENS de Lyon)-École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-École Nationale des Travaux Publics de l'État (ENTPE)-École nationale supérieure d'architecture de Lyon (ENSAL)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2019
Předmět:
Zdroj: International Journal of Geographical Information Science
International Journal of Geographical Information Science, Taylor & Francis, 2019, 33 (12), pp.2477-2497. ⟨10.1080/13658816.2019.1584804⟩
International Journal of Geographical Information Science, 2019, 33 (12), pp.2477-2497. ⟨10.1080/13658816.2019.1584804⟩
ISSN: 1362-3087
1365-8816
1365-8824
DOI: 10.1080/13658816.2019.1584804
Popis: International audience; In this paper, we propose and discuss a methodology to map the spatial fingerprints of novels and authors based on all of the named urban roads (i.e., odonyms) extracted from novels. We present several ways to explore Parisian space and fictional landscapes by interactively and simultaneously browsing geographical space and literary text. Our project involves building a platform capable of retrieving, mapping and analyzing the occurrences of named urban roads in novels in which the action occurs wholly or partly in Paris. This platform will be used in several areas, such as cultural tourism, urban research, and literary analysis. The paper focuses on extracting named urban roads and mapping the results for a sample of 31 novels published between 1800 and 1914. Two approaches to the annotation of odonyms are compared. First, we describe a proof of concept using queries made via the TXM textual analysis platform. Then, we describe an automatic process using a natural language processing (NLP) method. Additionally, we mention how the geo-semantic information annotated from the text (e.g., a structure combining verbs, spatial relations, named entities, adjectives and adverbs) can be used to automatically characterize the semantic content associated with named urban roads.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje