ARCHITECTURE RECOGNITION BY MEANS OF CONVOLUTIONAL NEURAL NETWORKS

Autor: Valerio Palma, R. D'Autilia, L. N. Andrianaivo
Rok vydání: 2019
Předmět:
Zdroj: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLII-2-W15, Pp 77-84 (2019)
ISSN: 2194-9034
DOI: 10.5194/isprs-archives-xlii-2-w15-77-2019
Popis: The use of mobile computing technologies can change the experience of visiting cultural sites by making vast digital heritage collections accessible on site. The spread of machine learning technologies on mobile devices is encouraging the interaction of artificial intelligence with the shape of the built environment. However, while some research already applies deep learning image recognition in an urban context, the literature on how to develop effective neural networks to detect architectural features is still limited, as well as the availability of architecture-related datasets. This work presents the steps and results of the prototype development of a mobile app to perform monument recognition using convolutional neural networks. The tool allows users to interact with the physical space and access a digital archive of texts, models, images and other data.
Databáze: OpenAIRE