Non-linear auto-regressive models for cross-frequency coupling in neural time series

Autor: Virginie van Wassenhove, Yves Grenier, Alexandre Gramfort, Laetitia Grabot, Lucille Tallot, Tom Dupré la Tour, Valérie Doyère
Přispěvatelé: Laboratoire Traitement et Communication de l'Information (LTCI), Télécom ParisTech-Institut Mines-Télécom [Paris] (IMT), Neuroscience Paris Seine (NPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Paris Seine (IBPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences de Paris-Saclay (Neuro-PSI), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Neuroimagerie cognitive (LCogn), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM), Neuroimagerie cognitive (UNICOG-U992), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Sud - Paris 11 (UP11), Modelling brain structure, function and variability based on high-field MRI data (PARIETAL), Service NEUROSPIN (NEUROSPIN), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Signal, Statistique et Apprentissage (S2A), Télécom ParisTech-Institut Mines-Télécom [Paris] (IMT)-Télécom ParisTech-Institut Mines-Télécom [Paris] (IMT), Département Images, Données, Signal (IDS), Télécom ParisTech, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria), Institut Mines-Télécom [Paris] (IMT)-Télécom Paris, Institut des Neurosciences Paris-Saclay (NeuroPSI), Neuroimagerie cognitive - Psychologie cognitive expérimentale (UNICOG-U992), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay, ANR-16-CE37-0004,AutoTime,Du codage automatique à la perception consciente du temps dans le système nerveux central: un déficit fondamental dans la schizophrénie?(2016), Neurosciences Paris Seine (NPS), Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Biologie Paris Seine (IBPS), Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Saclay (COmUE), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Service NEUROSPIN (NEUROSPIN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Jazyk: angličtina
Rok vydání: 2017
Předmět:
0301 basic medicine
Physiology
Computer science
[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology
MESH: Neurons
Action Potentials
computer.software_genre
Mathematical and Statistical Techniques
0302 clinical medicine
Goodness of fit
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
Medicine and Health Sciences
Feature (machine learning)
Bandwidth (Signal Processing)
lcsh:QH301-705.5
MESH: Action Potentials
Parametric statistics
Neurons
Mammals
0303 health sciences
[STAT.AP]Statistics [stat]/Applications [stat.AP]
Ecology
[SDV.NEU.PC]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Psychology and behavior
Physics
Brain
Eukaryota
[SDV.NEU.SC]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Cognitive Sciences
Signal Filtering
Electrophysiology
Computational Theory and Mathematics
Autoregressive model
Modeling and Simulation
Vertebrates
Physical Sciences
Parametric model
symbols
Engineering and Technology
Algorithm
Research Article
Models
Neurological

Neurophysiology
Research and Analysis Methods
Machine learning
Rodents
03 medical and health sciences
Cellular and Molecular Neuroscience
symbols.namesake
MESH: Brain
MESH: Models
Neurological

Acoustic Signals
Sine Waves
Genetics
Animals
Molecular Biology
Ecology
Evolution
Behavior and Systematics

030304 developmental biology
business.industry
Model selection
[SCCO.NEUR]Cognitive science/Neuroscience
Organisms
Probabilistic logic
Biology and Life Sciences
Acoustics
Filter (signal processing)
Bandpass Filters
Nonlinear system
030104 developmental biology
lcsh:Biology (General)
Speech Signal Processing
Signal Processing
Amniotes
Artificial intelligence
Hilbert transform
business
Mathematical Functions
computer
030217 neurology & neurosurgery
Neuroscience
Zdroj: PLoS Computational Biology
PLoS Computational Biology, Public Library of Science, 2017, 13 (12), pp.e1005893. ⟨10.1371/journal.pcbi.1005893⟩
PLoS Computational Biology, Public Library of Science, 2017
PLoS Computational Biology, 2017, 13 (12), pp.e1005893. ⟨10.1371/journal.pcbi.1005893⟩
PLoS Computational Biology, Vol 13, Iss 12, p e1005893 (2017)
PLOS Computational Biology
ISSN: 1553-734X
1553-7358
DOI: 10.1371/journal.pcbi.1005893⟩
Popis: We address the issue of reliably detecting and quantifying cross-frequency coupling (CFC) in neural time series. Based on non-linear auto-regressive models, the proposed method provides a generative and parametric model of the time-varying spectral content of the signals. As this method models the entire spectrum simultaneously, it avoids the pitfalls related to incorrect filtering or the use of the Hilbert transform on wide-band signals. As the model is probabilistic, it also provides a score of the model “goodness of fit” via the likelihood, enabling easy and legitimate model selection and parameter comparison; this data-driven feature is unique to our model-based approach. Using three datasets obtained with invasive neurophysiological recordings in humans and rodents, we demonstrate that these models are able to replicate previous results obtained with other metrics, but also reveal new insights such as the influence of the amplitude of the slow oscillation. Using simulations, we demonstrate that our parametric method can reveal neural couplings with shorter signals than non-parametric methods. We also show how the likelihood can be used to find optimal filtering parameters, suggesting new properties on the spectrum of the driving signal, but also to estimate the optimal delay between the coupled signals, enabling a directionality estimation in the coupling.
Author summary Neural oscillations synchronize information across brain areas at various anatomical and temporal scales. Of particular relevance, slow fluctuations of brain activity have been shown to affect high frequency neural activity, by regulating the excitability level of neural populations. Such cross-frequency-coupling can take several forms. In the most frequently observed type, the power of high frequency activity is time-locked to a specific phase of slow frequency oscillations, yielding phase-amplitude-coupling (PAC). Even when readily observed in neural recordings, such non-linear coupling is particularly challenging to formally characterize. Typically, neuroscientists use band-pass filtering and Hilbert transforms with ad-hoc correlations. Here, we explicitly address current limitations and propose an alternative probabilistic signal modeling approach, for which statistical inference is fast and well-posed. To statistically model PAC, we propose to use non-linear auto-regressive models which estimate the spectral modulation of a signal conditionally to a driving signal. This conditional spectral analysis enables easy model selection and clear hypothesis-testing by using the likelihood of a given model. We demonstrate the advantage of the model-based approach on three datasets acquired in rats and in humans. We further provide novel neuroscientific insights on previously reported PAC phenomena, capturing two mechanisms in PAC: influence of amplitude and directionality estimation.
Databáze: OpenAIRE