A type III porous-thermo-elastic problem with quasi-static microvoids

Autor: Alberto Castejón, Ramón Quintanilla, José R. Fernández, Noelia Bazarra
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GRAA - Grup de Recerca en Anàlisi Aplicada
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Work (thermodynamics)
74 Mechanics of deformable solids::74F Coupling of solid mechanics with other effects [Classificació AMS]
Finite elements
A priori error analysis
Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC]
74 Mechanics of deformable solids::74K Thin bodies
structures [Classificació AMS]

Quasi-static microvoids
02 engineering and technology
01 natural sciences
Stability (probability)
Thermoelastic damping
0203 mechanical engineering
2501.21 Simulación Numérica
0101 mathematics
Thermoelasticity
Physics
65 Numerical analysis::65M Partial differential equations
initial value and time-dependent initial-boundary value problems [Classificació AMS]

12 Matemáticas
Mechanical Engineering
010102 general mathematics
Mathematical analysis
Linear system
Condensed Matter Physics
Backward Euler method
Finite element method
Type III thermoelasticity
020303 mechanical engineering & transports
Rate of convergence
Mechanics of Materials
1206.02 Ecuaciones Diferenciales
Numerical simulations
Quasistatic process
Termoelasticitat
Zdroj: Investigo. Repositorio Institucional de la Universidade de Vigo
Universidade de Vigo (UVigo)
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
DOI: 10.1007/s11012-021-01398-0
Popis: In this work we study, from the numerical point of view, a one-dimensional thermoelastic problem where the thermal law is of type III. Quasi-static microvoids are also assumed within the model. The variational formulation leads to a coupled linear system made of variational equations and it is written in terms of the velocity, the volume fraction and the temperature. Fully discrete approximations are introduced by using the finite element method and the backward Euler method. A discrete stability property and a priori error estimates are proved, deriving the linear convergence under adequate additional regularity. Finally, some numerical simulations are presented to demonstrate the accuracy of the approximation and the behavior of the solution. Agencia Estatal de Investigación | Ref. PGC2018-096696-B-I00 Agencia Estatal de Investigación | Ref. PID2019-105118GB-I00
Databáze: OpenAIRE