A type III porous-thermo-elastic problem with quasi-static microvoids
Autor: | Alberto Castejón, Ramón Quintanilla, José R. Fernández, Noelia Bazarra |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GRAA - Grup de Recerca en Anàlisi Aplicada |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Work (thermodynamics)
74 Mechanics of deformable solids::74F Coupling of solid mechanics with other effects [Classificació AMS] Finite elements A priori error analysis Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC] 74 Mechanics of deformable solids::74K Thin bodies structures [Classificació AMS] Quasi-static microvoids 02 engineering and technology 01 natural sciences Stability (probability) Thermoelastic damping 0203 mechanical engineering 2501.21 Simulación Numérica 0101 mathematics Thermoelasticity Physics 65 Numerical analysis::65M Partial differential equations initial value and time-dependent initial-boundary value problems [Classificació AMS] 12 Matemáticas Mechanical Engineering 010102 general mathematics Mathematical analysis Linear system Condensed Matter Physics Backward Euler method Finite element method Type III thermoelasticity 020303 mechanical engineering & transports Rate of convergence Mechanics of Materials 1206.02 Ecuaciones Diferenciales Numerical simulations Quasistatic process Termoelasticitat |
Zdroj: | Investigo. Repositorio Institucional de la Universidade de Vigo Universidade de Vigo (UVigo) UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
DOI: | 10.1007/s11012-021-01398-0 |
Popis: | In this work we study, from the numerical point of view, a one-dimensional thermoelastic problem where the thermal law is of type III. Quasi-static microvoids are also assumed within the model. The variational formulation leads to a coupled linear system made of variational equations and it is written in terms of the velocity, the volume fraction and the temperature. Fully discrete approximations are introduced by using the finite element method and the backward Euler method. A discrete stability property and a priori error estimates are proved, deriving the linear convergence under adequate additional regularity. Finally, some numerical simulations are presented to demonstrate the accuracy of the approximation and the behavior of the solution. Agencia Estatal de Investigación | Ref. PGC2018-096696-B-I00 Agencia Estatal de Investigación | Ref. PID2019-105118GB-I00 |
Databáze: | OpenAIRE |
Externí odkaz: |