A distributed and parallel unite and conquer method to solve sequences of non-Hermitian linear systems
Autor: | Xinzhe Wu, Serge G. Petiton |
---|---|
Přispěvatelé: | Maison de la Simulation (MDLS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut National de Recherche en Informatique et en Automatique (Inria)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Université de Lille, ANR-15-SPPE-0003,MYX,MYX: MUST correctness checking for YML and XMP programs(2015) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Sequence
Sequence of linear systems Computer science Iterative method Iterative methods Applied Mathematics Linear system General Engineering Linear solvers Krylov methods Eigenvalues 010103 numerical & computational mathematics [INFO.INFO-NA]Computer Science [cs]/Numerical Analysis [cs.NA] Supercomputer Mathematics Classification (2000) 00A69 · 65F10 01 natural sciences Generalized minimal residual method Unite and Conquer 010101 applied mathematics Asynchronous communication Synchronization (computer science) 0101 mathematics [INFO.INFO-DC]Computer Science [cs]/Distributed Parallel and Cluster Computing [cs.DC] Algorithm Eigenvalues and eigenvectors |
Zdroj: | Japan Journal of Industrial and Applied Mathematics Japan Journal of Industrial and Applied Mathematics, In press, ⟨10.1007/s13160-019-00359-1⟩ Japan Journal of Industrial and Applied Mathematics, Kinokuniya Company, In press, ⟨10.1007/s13160-019-00359-1⟩ |
ISSN: | 0916-7005 1868-937X |
Popis: | Many problems in science and engineering often require to solve a long sequence of large-scale non-Hermitian linear systems with different right-hand sides (RHSs) but a unique operator. Efficiently solving such problems on extreme-scale platforms requires the minimization of global communications, reduction of synchronization and promotion of asynchronous communications. Unite and Conquer GMRES/LS-ERAM (UCGLE) method (Wu and Petiton, in Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region. ACM, New York, pp 36–46, https://doi.org/10.1145/3149457.3154481 , 2018) is a suitable candidate with the reduction of global communications and the synchronization points of all computing units. It consists of three computing algorithms with asynchronous communications that allow the use of approximated eigenvalues to accelerate the convergence of solving linear systems and to improve fault tolerance. In this paper, we extend both the mathematical model and the implementation of UCGLE method to adapt to solve sequences of linear systems. The eigenvalues obtained in solving previous linear systems by UCGLE can be recycled, improved on the fly and applied to construct a new initial guess vector for subsequent linear systems, which can achieve a continuous acceleration to solve linear systems in sequence. Numerical experiments using different test matrices to solve sequences of linear systems on supercomputer Tianhe-2 indicate a substantial decrease in both computation time and iteration steps when the approximated eigenvalues are recycled to generate the initial guess vectors. |
Databáze: | OpenAIRE |
Externí odkaz: |