A Fokker-Planck-based Monte Carlo method for electronic transport and avalanche simulation in single-photon avalanche diodes
Autor: | Rémi Helleboid, Denis Rideau, Isobel Nicholson, Jeremy Grebot, Bastien Mamdy, Gabriel Mugny, Marie Basset, Megan Agnew, Dominique Golanski, Sara Pellegrini, Jérôme Saint-Martin, Marco Pala, Philippe Dollfus |
---|---|
Přispěvatelé: | STMicroelectronics [Crolles] (ST-CROLLES), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), INL - Conception de Systèmes Hétérogènes (INL - CSH), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Université de Genève = University of Geneva (UNIGE), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), ANR-20-CE24-0004,GeSPAD,Diode à avalanche à photon unique en Germanium : de la caractérisation à la simulation avancée(2020) |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
Advection-Diffusion Monte Carlo (ADMC)
jitter Acoustics and Ultrasonics technology computed aided design (TCAD) Condensed Matter Physics avalanche breakdown probability Surfaces Coatings and Films Electronic Optical and Magnetic Materials electronic transport [PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] drift-diffusion electronic avalanche [SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics Fokker-Planck singlephoton avalanche diode (SPAD) Monte Carlo simulation [PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] |
Zdroj: | Journal of Physics D: Applied Physics Journal of Physics D: Applied Physics, IOP Publishing, In press, ⟨10.1088/1361-6463/ac9b6a⟩ Journal of Physics D: Applied Physics, In press, ⟨10.1088/1361-6463/ac9b6a⟩ |
ISSN: | 0022-3727 1361-6463 |
DOI: | 10.1088/1361-6463/ac9b6a⟩ |
Popis: | We present an efficient simulation method for electronic transport and avalanche in single-photon avalanche diodes (SPAD). Carrier transport is simulated in the real space using a particle Monte Carlo approach based on the Fokker–Planck point of view on an advection-diffusion equation, that enables us to reproduce mobility models, including electric fields and doping dependencies. The avalanche process is computed thanks to impact ionization rates implemented using a modified Random Path Length algorithm. Both transport and impact ionization mechanisms are computed concurrently from a statistical point of view, which allows us to achieve a full multi-particle simulation. This method provides accurate simulation of transport and avalanche process suitable for realistic three-dimensional SPADs, including all relevant stochastic aspects of these devices, together with a huge reduction of the computational time required, compared to standard Monte Carlo methods for charge carrier transport. The efficiency of our method empowers the possibility to precisely evaluate SPADs figures of merit and to explore new features that were untrackable by conventional methods. An extensive series of comparisons with experimental data on state-of-the art SPADs shows a very good accuracy of the proposed approach. |
Databáze: | OpenAIRE |
Externí odkaz: |