Making Kr+1-free graphs r-partite

Autor: József Balogh, Bernard Lidický, Mikhail Lavrov, Florian Pfender, Felix Christian Clemen
Rok vydání: 2020
Předmět:
Zdroj: Combinatorics, Probability and Computing. 30:609-618
ISSN: 1469-2163
0963-5483
DOI: 10.1017/s0963548320000590
Popis: The Erd\H{o}s-Simonovits stability theorem states that for all \epsilon >0 there exists \alpha >0 such that if G is a K_{r+1}-free graph on n vertices with e(G) > ex(n,K_{r+1}) - \alpha n^2, then one can remove \epsilon n^2 edges from G to obtain an r-partite graph. F\"uredi gave a short proof that one can choose \alpha=\epsilon. We give a bound for the relationship of \alpha and \varepsilon which is asymptotically sharp as \epsilon \to 0.
Comment: 12 pages, 1 figure
Databáze: OpenAIRE