Physical and thermodynamic properties of quartic quasitopological black holes and rotating black branes with nonlinear source
Autor: | M. Ghanaatian, F. Naeimipour, A. Bazrafshan, A. Khajeh |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Physics
Geometrothermodynamics 010308 nuclear & particles physics FOS: Physical sciences Naked singularity General Relativity and Quantum Cosmology (gr-qc) 01 natural sciences General Relativity and Quantum Cosmology Black hole De Sitter universe 0103 physical sciences Brane cosmology Anti-de Sitter space Brane 010306 general physics Black hole thermodynamics Mathematical physics |
Popis: | In this paper, we find the solutions of quartic quasitopological black holes and branes coupled to logarithmic and exponential forms of nonlinear electrodynamics. These solutions have an essential singularity at $r=0$. Depending on the value of charge parameter $q$, we have an extreme black hole/brane, a black hole/brane with two horizons or a naked singularity. For small values of parameter $q$, the solutions lead to a black hole/brane with two horizons. The values of the horizons are independent of the values of quasitopological parameters and depend only on the values of $q$, dimensions $n$, nonlinear parameter $\beta$ and mass parameter. Also, the solutions are not thermally stable for dS and flat spacetimes. However, AdS solutions are stable for $r_{+}>{r_{+}}_{\rm{ext}}$ which the temperature is zero for $r_{+}={r_{+}}_{\rm{ext}}$. The value of ${r_{+}}_{\rm{ext}}$ also depends on the values of parameters $q$, $\beta$, $n$ and $m$. As the value of ${r_{+}}_{\rm{ext}}$ decreases, the region of stability becomes larger. We also use HPEM metric to probe GTD formalism for our solutions. This metric is successful to predict the divergences of the scalar curvature exactly at the phase transition points. For large values of parameter $\Xi$, the black hole/brane has a transition to a stable state and stays stable. Comment: 14 pages, 7 figures |
Databáze: | OpenAIRE |
Externí odkaz: |