Joint Estimation of Location and Scatter in Complex Elliptical Distributions: A robust semiparametric and computationally efficient R-estimator of the shape matrix
Autor: | Alexandre Renaux, Stefano Fortunati, Frédéric Pascal |
---|---|
Přispěvatelé: | Laboratoire des signaux et systèmes (L2S), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Direction de la Recherche et de l'Innovation de l'IPSA (DRII), Institut Polytechnique des Sciences Avancées (IPSA), ANR-17-ASTR-0015,MARGARITA,Nouvelles Techniques Robustes et d'Inférences pour le Radar Adaptatif Moderne(2017) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Signal Processing (eess.SP)
FOS: Computer and information sciences Mean squared error Computer science robust estimators Complex Elliptically Symmetric (CES) distributions Context (language use) 02 engineering and technology 01 natural sciences Theoretical Computer Science Methodology (stat.ME) Set (abstract data type) 010104 statistics & probability FOS: Electrical engineering electronic engineering information engineering 0202 electrical engineering electronic engineering information engineering Nuisance parameter Electrical Engineering and Systems Science - Signal Processing 0101 mathematics Statistics - Methodology covariance matrix [STAT.AP]Statistics [stat]/Applications [stat.AP] Covariance matrix Estimator 020206 networking & telecommunications efficient estimators Hardware and Architecture Control and Systems Engineering Modeling and Simulation Signal Processing Pattern recognition (psychology) Semiparametric models Algorithm [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing Information Systems Generator (mathematics) |
Zdroj: | Journal of Signal Processing Systems Journal of Signal Processing Systems, Springer, 2021, ⟨10.1007/s11265-021-01674-y⟩ |
ISSN: | 1939-8018 1939-8115 |
DOI: | 10.1007/s11265-021-01674-y⟩ |
Popis: | The joint estimation of the location vector and the shape matrix of a set of independent and identically Complex Elliptically Symmetric (CES) distributed observations is investigated from both the theoretical and computational viewpoints. This joint estimation problem is framed in the original context of semiparametric models allowing us to handle the (generally unknown) density generator as an \textit{infinite-dimensional} nuisance parameter. In the first part of the paper, a computationally efficient and memory saving implementation of the robust and semiparmaetric efficient $R$-estimator for shape matrices is derived. Building upon this result, in the second part, a joint estimator, relying on the Tyler's $M$-estimator of location and on the $R$-estimator of shape matrix, is proposed and its Mean Squared Error (MSE) performance compared with the Semiparametric Cram\'{e}r-Rao Bound (CSCRB). Comment: This paper has been submitted to the Special Issue (related to MLSP) of the Journal of Signal Processing Systems |
Databáze: | OpenAIRE |
Externí odkaz: |