Unirationality and geometric unirationality for hypersurfaces in positive characteristics
Autor: | Stefan Schröer, Keiji Oguiso |
---|---|
Rok vydání: | 2020 |
Předmět: |
Pure mathematics
Degree (graph theory) 010308 nuclear & particles physics Mathematics::Complex Variables General Mathematics 010102 general mathematics 14M20 14J70 14G05 14J26 14G17 01 natural sciences Mathematics - Algebraic Geometry Mathematics::Algebraic Geometry 0103 physical sciences FOS: Mathematics Imperfect 0101 mathematics Algebraic Geometry (math.AG) Mathematics |
DOI: | 10.48550/arxiv.2002.09228 |
Popis: | Building on work of Segre and Koll'ar on cubic hypersurfaces, we construct over imperfect fields of characteristic p\geq 3 particular hypersurfaces of degree p, which show that geometrically rational schemes that are regular and whose rational points are Zariski dense are not necessarily unirational. A likewise behaviour holds for certain cubic surfaces in characteristic p=2. Comment: 16 pages |
Databáze: | OpenAIRE |
Externí odkaz: |