On the structure of diffuse measures for parabolic capacities

Autor: Andrzej Rozkosz, Tomasz Klimsiak
Rok vydání: 2018
Předmět:
DOI: 10.48550/arxiv.1808.06422
Popis: Let Q = ( 0 , T ) × Ω , where Ω is a bounded open subset of R d . We consider the parabolic p-capacity on Q naturally associated with the usual p-Laplacian. Droniou, Porretta, and Prignet have shown that if a bounded Radon measure μ on Q is diffuse, i.e. charges no set of zero p-capacity, p > 1 , then it is of the form μ = f + div ( G ) + g t for some f ∈ L 1 ( Q ) , G ∈ ( L p ′ ( Q ) ) d and g ∈ L p ( 0 , T ; W 0 1 , p ( Ω ) ∩ L 2 ( Ω ) ) . We show the converse of this result: if p > 1 , then each bounded Radon measure μ on Q admitting such a decomposition is diffuse.
Databáze: OpenAIRE