Parallel Jacobi-Davidson for solving generalized eigenvalue problems
Autor: | Margreet Nool, Auke van der Ploeg |
---|---|
Jazyk: | angličtina |
Rok vydání: | 1999 |
Předmět: |
Preconditioner
Mathematical analysis Domain decomposition methods Harmonic (mathematics) Computer Science::Numerical Analysis LU decomposition Mathematics::Numerical Analysis law.invention Ritz method law Computer Science::Mathematical Software Applied mathematics Eigenvalues and eigenvectors Block (data storage) Mathematics Cyclic reduction |
Zdroj: | Vector and Parallel Processing – VECPAR’98 ISBN: 9783540662280 VECPAR |
Popis: | We study the Jacobi-Davidson method for the solution of large generalised eigenproblems as they arise in MagnetoHydroDynamics. We have combined Jacobi-Davidson (using standard Ritz values) with a shift and invert technique. We apply a complete LU decomposition in which reordering strategies based on a combination of block cyclic reduction and domain decomposition result in a well-parallelisable algorithm. Moreover, we describe a variant of Jacobi-Davidson in which harmonic Ritz values are used. In this variant the same parallel LU decomposition is used, but this time as a preconditioner to solve the ‘correction‘ equation. |
Databáze: | OpenAIRE |
Externí odkaz: |