Impact of materials technology on the breeding blanket design Recent progress and case studies in materials technology
Autor: | Heiko Neuberger, Michael Rieth, Bradut-Eugen Ghidersa, Jörg Rey, E. Simondon, Michael Dürrschnabel, Giacomo Aiello, Simon Bonk, N. De Wispelaere, Christian Zeile, Y. de Carlan, J. Henry, Jan Hoffmann, Gerald Pintsuk |
---|---|
Přispěvatelé: | Laboratoire d'Analyse Microstructurale des Matériaux (LA2M), Service des Recherches Métallurgiques Appliquées (SRMA), Département des Matériaux pour le Nucléaire (DMN), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Département des Matériaux pour le Nucléaire (DMN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, European Project: 633053,H2020,EURATOM-Adhoc-2014-20,EUROfusion(2014) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Heat-affected zone
Technology Materials science Nuclear engineering chemistry.chemical_element Mockup Blanket 7. Clean energy 01 natural sciences 010305 fluids & plasmas Engineering Operating temperature 0103 physical sciences General Materials Science ddc:530 Blanket first wall 010306 general physics Embrittlement Helium Civil and Structural Engineering High heat flux test Structural material Mechanical Engineering [CHIM.MATE]Chemical Sciences/Material chemistry Materials technology Nuclear Energy and Engineering chemistry Creep Heat flux Helium cooling loop ddc:600 |
Zdroj: | Fusion Engineering and Design Fusion Engineering and Design, 2021, 166, pp.112275. ⟨10.1016/j.fusengdes.2021.112275⟩ Fusion engineering and design 166, 112275-(2021). doi:10.1016/j.fusengdes.2021.112275 Fusion Engineering and Design, 166, Art.-Nr.: 112275 |
ISSN: | 0920-3796 1873-7196 |
Popis: | A major part in the EUROfusion materials research program is dedicated to characterize and quantify nuclear fusion specific neutron damage in structural materials. While the majority of irradiation data gives a relatively clear view on the displacement damage, the effect of transmutation – i.e. especially hydrogen and helium production in steels – is not yet explored very well. However, few available results indicate that EUROFER-type steels will reach their operating limit as soon as the formation of helium bubbles reaches a critical amount or size. At that point, the material would fail due to embrittlement at the considered load. This paper presents a strategy for the mitigation of the before-mentioned problem using the following facts: • the neutron dose and related transmutation rate decreases quickly inside the first wall, that is, only a plasma-near area is extremely loaded • nanostructured oxide dispersion strengthened (ODS) steels may have an enormous trapping effect on helium and hydrogen, which would suppress the formation of large helium bubbles • compared to conventional steels, ODS steels show improved irradiation tensile ductility and creep strength In summary, producing the plasma facing, highly neutron and heat loaded part of blankets by an ODS steel, while using EUROFER97 for everything else, would allow a higher heat flux as well as a longer operating period. Consequently, we (1) developed and produced 14 % Cr ferritic ODS steel plates. (2) We fabricated a mockup with 5 cooling channels and a plated first wall of ODS steel, using the same production processes as for a real component. And finally, (3) we performed high heat flux tests in the HELOKA facility (Helium Loop Karlsruhe at KIT) applying short and up to 2 h long pulses, in which the operating temperature limit for EUROFER97 (i.e., 550 °C) was finally exceeded by 100 K. Thereafter, microstructure and defect analyses did not reveal defects or recognizable damage. Only a heat affected zone in the EUROFER/ODS steel interface could be detected. This demonstrates that the use of ODS steel could make a decisive difference in the future design and performance of breeding blankets. |
Databáze: | OpenAIRE |
Externí odkaz: |