Large global-in-time solutions to a nonlocal model of chemotaxis
Autor: | Grzegorz Karch, Jacek Zienkiewicz, Piotr Biler |
---|---|
Rok vydání: | 2018 |
Předmět: |
General Mathematics
010102 general mathematics Mathematical analysis Mathematics::Analysis of PDEs Chemotaxis 01 natural sciences 010101 applied mathematics Mathematics - Analysis of PDEs FOS: Mathematics 35Q92 35B44 35K55 35A01 0101 mathematics Diffusion (business) Analysis of PDEs (math.AP) Mathematics |
Zdroj: | Advances in Mathematics. 330:834-875 |
ISSN: | 0001-8708 |
DOI: | 10.1016/j.aim.2018.03.036 |
Popis: | We consider the parabolic–elliptic model for the chemotaxis with fractional (anomalous) diffusion. Global-in-time solutions are constructed under (nearly) optimal assumptions on the size of radial initial data. Moreover, criteria for blowup of radial solutions in terms of suitable Morrey spaces norms are derived. |
Databáze: | OpenAIRE |
Externí odkaz: |