Strain-induced coupling of electrical polarization and structural defects in SrMnO3 films
Autor: | Nicola A. Spaldin, Dennis Meier, Manfred Fiebig, Laura Maurel, Eric Langenberg, José A. Pardo, Morgan Trassin, César Magén, Ulrich Aschauer, I. P. Krug, Pedro A. Algarabel, Javier Blasco, Martin Lilienblum, Carsten Becher |
---|---|
Přispěvatelé: | Ministerio de Economía y Competitividad (España), Swiss National Science Foundation, Gobierno de Aragón |
Rok vydání: | 2015 |
Předmět: |
Phase transition
Materials science Condensed matter physics Biomedical Engineering Nonlinear optics Bioengineering Nanotechnology Dielectric Condensed Matter Physics Thermal conduction Capacitance Atomic and Molecular Physics and Optics Condensed Matter::Materials Science Scanning probe microscopy General Materials Science Density functional theory Electrical and Electronic Engineering Polarization (electrochemistry) |
Zdroj: | Zaguán. Repositorio Digital de la Universidad de Zaragoza instname Digital.CSIC. Repositorio Institucional del CSIC |
ISSN: | 1748-3395 1748-3387 |
DOI: | 10.1038/nnano.2015.108 |
Popis: | Letter.-- et al. Local perturbations in complex oxides, such as domain walls, strain and defects, are of interest because they can modify the conduction or the dielectric and magnetic response, and can even promote phase transitions. Here, we show that the interaction between different types of local perturbations in oxide thin films is an additional source of functionality. Taking SrMnO 3 as a model system, we use nonlinear optics to verify the theoretical prediction that strain induces a polar phase, and apply density functional theory to show that strain simultaneously increases the concentration of oxygen vacancies. These vacancies couple to the polar domain walls, where they establish an electrostatic barrier to electron migration. The result is a state with locally structured room-temperature conductivity consisting of conducting nanosized polar domains encased by insulating domain boundaries, which we resolve using scanning probe microscopy. Our 'nanocapacitor' domains can be individually charged, suggesting stable capacitance nanobits with a potential for information storage technology. M.F., D.M. and M.L. acknowledge funding from grant ‘ETH-06 12-2’ and from SNF proposal no. 200021-149192. The authors acknowledge funding through the SNF R’equip Program (no. 206021-144988). Financial support from Spanish Ministerio de Economía y Competitividad through projects MAT2011-27553-C02, MAT2012-38213-C02-01, MAT2014-51982-C2 and from Regional Gobierno de Aragón through project E26 is acknowledged. |
Databáze: | OpenAIRE |
Externí odkaz: |