Additional file 2 of Clinical implementation of RNA sequencing for Mendelian disease diagnostics

Autor: Yépez, Vicente A., Gusic, Mirjana, Kopajtich, Robert, Mertes, Christian, Smith, Nicholas H., Alston, Charlotte L., Ban, Rui, Beblo, Skadi, Berutti, Riccardo, Blessing, Holger, Ciara, Elżbieta, Distelmaier, Felix, Freisinger, Peter, Häberle, Johannes, Hayflick, Susan J., Hempel, Maja, Itkis, Yulia S., Kishita, Yoshihito, Klopstock, Thomas, Krylova, Tatiana D., Lamperti, Costanza, Lenz, Dominic, Makowski, Christine, Mosegaard, Signe, Müller, Michaela F., Muñoz-Pujol, Gerard, Nadel, Agnieszka, Ohtake, Akira, Okazaki, Yasushi, Procopio, Elena, Schwarzmayr, Thomas, Smet, Joél, Staufner, Christian, Stenton, Sarah L., Strom, Tim M., Terrile, Caterina, Tort, Frederic, Van Coster, Rudy, Vanlander, Arnaud, Wagner, Matias, Xu, Manting, Fang, Fang, Ghezzi, Daniele, Mayr, Johannes A., Piekutowska-Abramczuk, Dorota, Ribes, Antonia, Rötig, Agnès, Taylor, Robert W., Wortmann, Saskia B., Murayama, Kei, Meitinger, Thomas, Gagneur, Julien, Prokisch, Holger
Rok vydání: 2022
Předmět:
DOI: 10.6084/m9.figshare.19518428
Popis: Additional file 2: Fig. S1. Overview of the study. Fig. S2. Quality control. Fig. S3. DNA-RNA sample matching. Fig. S4. Aberrant events per sample. Fig. S5. Rare variants among expression outliers. Fig. S6. Power analysis of overexpression outliers. Fig. S7. Power analysis of underexpression outliers with respect to biological coefficient of variation. Fig. S8. Cases with many mtDNA expression outliers. Fig. S9. Rare variants among splicing outliers. Fig. S10. Splicing prediction algorithms evaluation. Fig. S11. Complex pattern of aberrant splicing. Fig. S12. Analysis of variants called by RNA-seq. Fig. S13. Rare variants leading to outliers. Fig. S14. Diagnostic rate across cohorts.
Databáze: OpenAIRE