Probabilistic Forecasting of Regional Wind Power Generation for the EEM20 Competition: a Physics-oriented Machine Learning Approach

Autor: Simon Camal, Georges Kariniotakis, Valentin Mahler, Kevin Bellinguer
Přispěvatelé: Centre Procédés, Énergies Renouvelables, Systèmes Énergétiques (PERSEE), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), KTH, IEEE, European Project: 864337,Smart4RES, Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: 17th European Energy Market Conference, EEM 2020
17th European Energy Market Conference, EEM 2020, KTH, IEEE, Sep 2020, Stockholm (by visio), Sweden
HAL
2020 17th International Conference on the European Energy Market (EEM)
Popis: International audience; Variable renewable energy has a growing impact on electricity markets and power systems in many regions of the world. In this context, the 17th International Conference on the European Energy Market EEM20 set up a competition to develop probabilistic forecasting tools of wind production at a regional level. This paper proposes an adaptive approach for regional wind power forecasting. A physics-oriented pre-processing of the data delivers analog weather patterns and wind-power-related variables, then a k-means clustering of wind farms further reduces the dimension of the problem. The generated representative features feed a Quantile Regression Forests model that produces sharp and reliable predictions. As a result, our model won the competition with a relative improvement of the average pinball loss of 6.7% and 14.7%, compared to the teams ranked second and third respectively.
Databáze: OpenAIRE