Pulse Replication and Accumulation of Eigenvalues

Autor: Paul A. Carter, Björn Sandstede, Jens D. M. Rademacher
Rok vydání: 2021
Předmět:
Zdroj: SIAM Journal on Mathematical Analysis. 53:3520-3576
ISSN: 1095-7154
0036-1410
DOI: 10.1137/20m1340113
Popis: Motivated by pulse-replication phenomena observed in the FitzHugh--Nagumo equation, we investigate traveling pulses whose slow-fast profiles exhibit canard-like transitions. We show that the spectra of the PDE linearization about such pulses may contain many point eigenvalues that accumulate onto a union of curves as the slow scale parameter approaches zero. The limit sets are related to the absolute spectrum of the homogeneous rest states involved in the canard-like transitions. Our results are formulated for general systems that admit an appropriate slow-fast structure.
Databáze: OpenAIRE