Asymptotic forms of solutions of certain linear ordinary differential equations
Autor: | Charles N. Friedman |
---|---|
Rok vydání: | 1981 |
Předmět: |
Asymptotic analysis
Matrix differential equation Applied Mathematics 010102 general mathematics Mathematical analysis 010103 numerical & computational mathematics Exponential integrator 01 natural sciences Method of matched asymptotic expansions Poincaré–Lindstedt method Integrating factor symbols.namesake Linear differential equation Ordinary differential equation symbols 0101 mathematics Analysis Mathematics |
Zdroj: | Journal of Mathematical Analysis and Applications. 80(2):461-476 |
ISSN: | 0022-247X |
DOI: | 10.1016/0022-247x(81)90116-5 |
Popis: | We analyze the asymptotic behavior as x → ∞ of the product integral Πx0xeA(s)ds, where A(s) is a perturbation of a diagonal matrix function by an integrable function on [x0,∞). Our results give information concerning the asymptotic behavior of solutions of certain linear ordinary differential equations, e.g., the second order equation y″ = a(x)y. |
Databáze: | OpenAIRE |
Externí odkaz: |