BEM-Fading regularization algorithm for Cauchy problems in 2D anisotropic heat conduction
Autor: | Andreea–Paula Voinea–Marinescu, Liviu Marin, Franck Delvare |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques Nicolas Oresme (LMNO), Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Applied Mathematics
Numerical analysis Mathematical analysis Boundary (topology) Cauchy distribution 010103 numerical & computational mathematics [PHYS.MECA]Physics [physics]/Mechanics [physics] Thermal conduction 01 natural sciences Regularization (mathematics) 010101 applied mathematics Heat equation Boundary value problem 0101 mathematics Boundary element method ComputingMilieux_MISCELLANEOUS Mathematics |
Zdroj: | Numerical Algorithms Numerical Algorithms, Springer Verlag, 2021, 88 (4), pp.1667-1702. ⟨10.1007/s11075-021-01090-0⟩ |
ISSN: | 1017-1398 1572-9265 |
DOI: | 10.1007/s11075-021-01090-0⟩ |
Popis: | We investigate the numerical reconstruction of the missing thermal boundary data on a part of the boundary for the steady-state heat conduction equation in anisotropic solids from the knowledge of exact or noisy Cauchy data on the remaining and accessible boundary. This inverse boundary value problem is tackled by applying and adapting to the anisotropic case the algorithm based on the fading regularization method, originally proposed by Cimetiere, Delvare, and Pons (Comptes Rendus de l’Academie des Sciences - Serie IIb - Mecanique, 328 639–644 2000), and Cimetiere, Delvare, et al. (Inverse Probl., 17 553–570 2001) for the isotropic heat conduction equation. The numerical implementation is realised for 2D homogeneous solids by using the boundary element method, whilst the numerical solution is stabilized/regularized by stopping the iterative process based on an L-curve type criterion (Hansen 1998). |
Databáze: | OpenAIRE |
Externí odkaz: |