Control of structural flexibility of layered-pillared metal-organic frameworks anchored at surfaces

Autor: Inke Hante, Roland A. Fischer, Konstantin Epp, Gregor Kieslich, Anna Lisa Semrau, Min Tu, Samuel J. Baxter, Michael Paulus, Suttipong Wannapaiboon, Andreas Schneemann, Christian Sternemann
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Nature Communications, Vol 10, Iss 1, Pp 1-10 (2019)
Nature Communications
ISSN: 2041-1723
DOI: 10.1038/s41467-018-08285-5
Popis: Flexible metal-organic frameworks (MOFs) are structurally flexible, porous, crystalline solids that show a structural transition in response to a stimulus. If MOF-based solid-state and microelectronic devices are to be capable of leveraging such structural flexibility, then the integration of MOF thin films into a device configuration is crucial. Here we report the targeted and precise anchoring of Cu-based alkylether-functionalised layered-pillared MOF crystallites onto substrates via stepwise liquid-phase epitaxy. The structural transformation during methanol sorption is monitored by in-situ grazing incidence X-ray diffraction. Interestingly, spatially-controlled anchoring of the flexible MOFs on the surface induces a distinct structural responsiveness which is different from the bulk powder and can be systematically controlled by varying the crystallite characteristics, for instance dimensions and orientation. This fundamental understanding of thin-film flexibility is of paramount importance for the rational design of MOF-based devices utilising the structural flexibility in specific applications such as selective sensors.
Understanding the structural dynamics of flexible metal-organic frameworks at a thin-film level is key if they are to be implemented in devices. Here, Fischer and colleagues anchor flexible MOF crystallites onto substrates and identify a structural responsiveness that is distinct to that of the bulk.
Databáze: OpenAIRE