Analysis on Laakso graphs with application to the structure of transportation cost spaces
Autor: | Stephen J. Dilworth, Mikhail I. Ostrovskii, Denka Kutzarova |
---|---|
Rok vydání: | 2021 |
Předmět: |
Primary: 46B03
Secondary: 30L05 42C10 46B07 46B85 021103 operations research General Mathematics 010102 general mathematics Dimension (graph theory) Cycle space 0211 other engineering and technologies Diamond graph Metric Geometry (math.MG) 02 engineering and technology Operator theory Lipschitz continuity Space (mathematics) 01 natural sciences Functional Analysis (math.FA) Theoretical Computer Science Mathematics - Functional Analysis Combinatorics Projection (relational algebra) Metric space Mathematics - Metric Geometry FOS: Mathematics 0101 mathematics Analysis Mathematics |
Zdroj: | Positivity. 25:1403-1435 |
ISSN: | 1572-9281 1385-1292 |
DOI: | 10.1007/s11117-021-00821-w |
Popis: | This article is a continuation of our article in Dilworth et al. (Can J Math 72:774–804, 2020). We construct orthogonal bases of the cycle and cut spaces of the Laakso graph $$\mathcal {L}_n$$ . They are used to analyze projections from the edge space onto the cycle space and to obtain reasonably sharp estimates of the projection constant of $${\text {Lip}}_0(\mathcal {L}_n)$$ , the space of Lipschitz functions on $$\mathcal {L}_n$$ . We deduce that the Banach–Mazur distance from $${\mathrm{TC}}\quad (\mathcal {L}_n)$$ , the transportation cost space of $$\mathcal {L}_n$$ , to $$\ell _1^N$$ of the same dimension is at least $$(3n-5)/8$$ , which is the analogue of a result from [op. cit.] for the diamond graph $$D_n$$ . We calculate the exact projection constants of $${\text {Lip}}_0(D_{n,k})$$ , where $$D_{n,k}$$ is the diamond graph of branching k. We also provide simple examples of finite metric spaces, transportation cost spaces on which contain $$\ell _\infty ^3$$ and $$\ell _\infty ^4$$ isometrically. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |