Secant varieties to osculating varieties of Veronese embeddings of P^n

Autor: Alessandra Bernardi, Alessandro Gimigliano, Maria Virginia Catalisano, Monica Idà
Přispěvatelé: Geometry, algebra, algorithms (GALAAD), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Ingegneria della produzione, termoenergetica e modelli matematici (DIPTEM), Università degli studi di Genova = University of Genoa (UniGe), Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), European Project: 252367,EC:FP7:PEOPLE,FP7-PEOPLE-2009-IEF,DECONSTRUCT(2010), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (... - 2019) (UNS), Universita degli studi di Genova, A.Bernardi, M.V.Catalisano, A.Gimigliano, M.Idà.
Jazyk: angličtina
Rok vydání: 2009
Předmět:
Zdroj: Journal of Algebra
Journal of Algebra, 2009, 321 (3), pp.982-1004. ⟨10.1016/j.jalgebra.2008.10.020⟩
Journal of Algebra, Elsevier, 2009, 321 (3), pp.982-1004. ⟨10.1016/j.jalgebra.2008.10.020⟩
Bernardi, Alessandra ; Catalisano, Maria Virginia ; Gimigliano, Alessandro ; Idà, Monica (2008) Secant varieties to osculating varieties of Veronese embeddings of $P^n$. [Preprint]
ISSN: 0021-8693
1090-266X
DOI: 10.1016/j.jalgebra.2008.10.020⟩
Popis: International audience; A well known theorem by Alexander-Hirschowitz states that all the higher secant varieties of $V_{n,d}$ (the $d$-uple embedding of $\PP n$) have the expected dimension, with few known exceptions. We study here the same problem for $T_{n,d}$, the tangential variety to $V_{n,d}$, and prove a conjecture, which is the analogous of Alexander-Hirschowitz theorem, for $n\leq 9$. Moreover. we prove that it holds for any $n,d$ if it holds for $d=3$. Then we generalize to the case of $O_{k,n,d}$, the $k$-osculating variety to $V_{n,d}$, proving, for $n=2$, a conjecture that relates the defectivity of $\sigma_s(O_{k,n,d})$ to the Hilbert function of certain sets of fat points in $\PP n$.
Databáze: OpenAIRE