Mixed Hodge structures and representations of fundamental groups of algebraic varieties

Autor: Louis-Clément Lefèvre
Přispěvatelé: Institut Fourier (IF ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), ANR-16-CE40-0011,Hodgefun,Groupes fondamentaux, Théorie de Hodge et Motifs(2016), Institut Fourier ( IF ), Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ), ANR-16-CE40-0011-01,Hodgefun,Fundamental Groups, Hodge Theory and Motives, Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Advances in Mathematics
Advances in Mathematics, Elsevier, 2019, 349, pp.869-910. ⟨10.1016/j.aim.2019.04.028⟩
IF_PREPUB. 34 pages. 2018
ISSN: 0001-8708
1090-2082
DOI: 10.1016/j.aim.2019.04.028⟩
Popis: Given a complex variety $X$, a linear algebraic group $G$ and a representation $\rho$ of the fundamental group $\pi\_1(X,x)$ into $G$, we develop a framework for constructing a functorial mixed Hodge structure on the formal local ring of the representation variety of $\pi\_1(X,x)$ into $G$ at $\rho$ using mixed Hodgediagrams and methods of $L\_\infty$ algebras. We apply it in two geometric situations: either when $X$ is compact K{\"a}hler and $\rho$ is the monodromy of a variation of Hodge structure, or when $X$ is smooth quasi-projective and $\rho$ has finite image.
Comment: 34 pages
Databáze: OpenAIRE