Fano manifolds of index n-1 and the cone conjecture

Autor: Artie Prendergast-Smith, Izzet Coskun
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Popis: The Morrison-Kawamata cone conjecture predicts that the actions of the automorphism group on the effective nef cone and the pseudo-automorphism group on the effective movable cone of a klt Calabi-Yau pair $(X, \Delta)$ have finite, rational polyhedral fundamental domains. Let $Z$ be an $n$-dimensional Fano manifold of index $n-1$ such that $-K_Z = (n-1) H$ for an ample divisor $H$. Let $\Gamma$ be the base locus of a general $(n-1)$-dimensional linear system $V \subset |H|$. In this paper, we verify the Morrison-Kawamata cone conjecture for the blow-up of $Z$ along $\Gamma$.
Comment: 30 pages
Databáze: OpenAIRE