Fano manifolds of index n-1 and the cone conjecture
Autor: | Artie Prendergast-Smith, Izzet Coskun |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
Pure mathematics
Conjecture Group (mathematics) General Mathematics Linear system Divisor (algebraic geometry) Fano plane 14E07 14E30 Manifold Base locus Combinatorics Mathematics - Algebraic Geometry Mathematics::Algebraic Geometry Cone (topology) FOS: Mathematics Algebraic Geometry (math.AG) Mathematics |
Popis: | The Morrison-Kawamata cone conjecture predicts that the actions of the automorphism group on the effective nef cone and the pseudo-automorphism group on the effective movable cone of a klt Calabi-Yau pair $(X, \Delta)$ have finite, rational polyhedral fundamental domains. Let $Z$ be an $n$-dimensional Fano manifold of index $n-1$ such that $-K_Z = (n-1) H$ for an ample divisor $H$. Let $\Gamma$ be the base locus of a general $(n-1)$-dimensional linear system $V \subset |H|$. In this paper, we verify the Morrison-Kawamata cone conjecture for the blow-up of $Z$ along $\Gamma$. Comment: 30 pages |
Databáze: | OpenAIRE |
Externí odkaz: |