Quetiapine protects the blood-brain barrier in traumatic brain injury
Autor: | Binu Tharakan, Stanley Kurek, Chinchusha Anasooya Shaji, Bobby Darnell Robinson, Justin L. Regner, Claire L. Isbell |
---|---|
Rok vydání: | 2018 |
Předmět: |
Male
Models Molecular 0301 basic medicine Intravital Microscopy medicine.drug_class Traumatic brain injury Atypical antipsychotic Pharmacology Critical Care and Intensive Care Medicine Blood–brain barrier Permeability Tight Junctions Mice Quetiapine Fumarate 03 medical and health sciences 0302 clinical medicine In vivo Brain Injuries Traumatic Electric Impedance Animals Humans Medicine Computer Simulation Cells Cultured beta Catenin Chitosan Tight junction business.industry Brain Endothelial Cells medicine.disease Rats Mice Inbred C57BL Disease Models Animal 030104 developmental biology medicine.anatomical_structure Matrix Metalloproteinase 9 Blood-Brain Barrier Microvessels Zonula Occludens-1 Protein Quetiapine Surgery business 030217 neurology & neurosurgery Ex vivo Intravital microscopy Antipsychotic Agents medicine.drug |
Zdroj: | Journal of Trauma and Acute Care Surgery. 85:968-976 |
ISSN: | 2163-0763 2163-0755 |
DOI: | 10.1097/ta.0000000000002011 |
Popis: | BACKGROUND The integrity of the blood-brain barrier (BBB) is paramount in limiting vasogenic edema following traumatic brain injury (TBI). The purpose of this study was to ascertain if quetiapine, an atypical antipsychotic commonly used in trauma/critical care for delirium, protects the BBB and attenuates hyperpermeability in TBI. METHODS The effect of quetiapine on hyperpermeability was examined through molecular modeling, cellular models in vitro and small animal models in vivo. Molecular docking was performed with AutoDock Vina to matrix metalloproteinase-9. Rat brain microvascular endothelial cells (BMECs) were pretreated with quetiapine (20 μM; 1 hour) followed by an inflammatory activator (20 μg/mL chitosan; 2 hours) and compared to controls. Immunofluorescence localization for tight junction proteins zonula occludens-1 and adherens junction protein β-catenin was performed. Human BMECs were grown as a monolayer and pretreated with quetiapine (20 μM; 1 hour) followed by chitosan (20 μg/mL; 2 hours), and transendothelial electrical resistance was measured. C57BL/6 mice (n = 5/group) underwent mild to moderate TBI (controlled cortical impactor) or sham craniotomy. The treatment group was given 10 mg/kg quetiapine intravenously 10 minutes after TBI. The difference in fluorescence intensity between intravascular and interstitium (ΔI) represented BBB hyperpermeability. A matrix metalloproteinase-9 activity assay was performed in brain tissue from animals in the experimental groups ex vivo. RESULTS In silico studies showed quetiapine thermodynamically favorable binding to MMP-9. Junctional localization of zonula occludens-1 and β-catenin showed retained integrity in quetiapine-treated cells as compared with the chitosan group in rat BMECs. Quetiapine attenuated monolayer permeability compared with chitosan group (p < 0.05) in human BMECs. In the animal studies, there was a significant decrease in BBB hyperpermeability and MMP-9 activity when compared between the TBI and TBI plus quetiapine groups (p < 0.05). CONCLUSION Quetiapine treatment may have novel anti-inflammatory properties to provide protection to the BBB by preserving tight junction integrity. LEVEL OF EVIDENCE level IV. |
Databáze: | OpenAIRE |
Externí odkaz: |