Tool wear monitoring and prognostics challenges: a comparison of connectionist methods toward an adaptive ensemble model

Autor: Kamran Javed, Xiang Li, Rafael Gouriveau, Noureddine Zerhouni
Přispěvatelé: Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Singapore Institute of Manufacturing Technology (SIMTech)
Rok vydání: 2016
Předmět:
Zdroj: Journal of Intelligent Manufacturing
Journal of Intelligent Manufacturing, 2016, pp, pp.1-18
ISSN: 1572-8145
0956-5515
DOI: 10.1007/s10845-016-1221-2
Popis: International audience; In a high speed milling operation the cutting tool acts as a backbone of machining process, which requires timely replacement to avoid loss of costly workpiece or machine downtime. To this aim, prognostics is applied for predicting tool wear and estimating its life span to replace the cutting tool before failure. However, the life span of cutting tools varies between minutes or hours, therefore time is critical for tool condition monitoring. Moreover, complex nature of manufacturing process requires models that can accurately predict tool degradation and provide confidence for decisions. In this context, a data-driven connectionist approach is proposed for tool condition monitoring application. In brief, an ensemble of Summation Wavelet-Extreme Learning Machine models is proposed with incremental learning scheme. The proposed approach is validated on cutting force measurements data from Computer Numerical Control machine. Results clearly show the significance of our proposition.
Databáze: OpenAIRE