The pH-sensing Rim101 pathway positively regulates the transcriptional expression of the calcium pump gene PMR1 to affect calcium sensitivity in budding yeast
Autor: | Hongbo Yan, Tianshu Fang, Huihui Xu, Linghuo Jiang |
---|---|
Rok vydání: | 2020 |
Předmět: |
0301 basic medicine
Saccharomyces cerevisiae Proteins Calcium pump Genes Fungal Mutant Saccharomyces cerevisiae Biophysics chemistry.chemical_element Calcium-Transporting ATPases Calcium Biochemistry 03 medical and health sciences symbols.namesake 0302 clinical medicine Gene Expression Regulation Fungal Calcium Signaling Molecular Biology Transcription factor biology Chemistry Cell Biology Hydrogen-Ion Concentration Golgi apparatus biology.organism_classification Yeast Cell biology Repressor Proteins 030104 developmental biology 030220 oncology & carcinogenesis Mutation Cyclosporine symbols Ectopic expression Gene Deletion Metabolic Networks and Pathways Molecular Chaperones Signal Transduction |
Zdroj: | Biochemical and Biophysical Research Communications. 532:453-458 |
ISSN: | 0006-291X |
DOI: | 10.1016/j.bbrc.2020.08.083 |
Popis: | In Saccharomyces cerevisiae, the Rim101 pathway senses extracellular pH changes through a complex consisted of Rim8, Rim9 and Rim21 at the plasma membrane. Activation of this sensor complex induces a proteolytical complex composed of Rim13 and Rim20 and leads to the C-terminal processing and activation of the transcription factor Rim101. Deletion mutants for RIM8, RIM9, RIM13, RIM20, RIM21 and RIM101 causes yeast cells to be sensitive to calcium stress, but how they regulate calcium sensitivity remain unknown. Here we show that deletion mutations of these six Rim101 pathway components elevate the activation level of the calcium/calcineurin signaling and the transcriptional expression level of the vacuolar calcium pump gene PMC1, but lead to a reduction in transcriptional expression level of the ER/Golgi calcium pump gene PMR1 in yeast cells. Deletion of NRG1, encoding one of the repression targets of Rim101, rescues the transcriptional expression of PMR1 in all these mutants. Furthermore, ectopic expression of a constitutively active form of Rim101 or further deletion of NRG1 suppresses the calcium sensitivity of these six deletion mutants. Therefore, the pH-sensing Rim101 pathway positively regulates the transcriptional expression of PMR through its downstream target Nrg1 to affect the calcium sensitivity of yeast cells. |
Databáze: | OpenAIRE |
Externí odkaz: |