Time-dependent $G$ in Einstein's equations as an alternative to the cosmological constant

Autor: Isaac Tutusaus, Ekim Taylan Hanımeli, Brahim Lamine, Alain Blanchard
Přispěvatelé: Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Riemann curvature tensor
data analysis method
cosmological model
Cosmology and Nongalactic Astrophysics (astro-ph.CO)
General relativity
gravitation: model
FOS: Physical sciences
General Relativity and Quantum Cosmology (gr-qc)
Cosmological constant
baryon: oscillation: acoustic
01 natural sciences
General Relativity and Quantum Cosmology
Metric expansion of space
Tensor field
symbols.namesake
fundamental constant: time dependence
statistical analysis
0103 physical sciences
supernova
general relativity
energy: density
010306 general physics
radiation: energy
Scale factor (cosmology)
Mathematical physics
Physics
Bianchi identity
cosmological constant
010308 nuclear & particles physics
field equations
Cosmology
Gravitational constant
space-time
field theory: tensor
symbols
[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]
gravitation: fundamental constant
Baryon acoustic oscillations
Einstein equation
expansion: acceleration
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
Astrophysics - Cosmology and Nongalactic Astrophysics
energy: conservation law
Zdroj: Phys.Rev.D
Phys.Rev.D, 2020, 101 (6), pp.063513. ⟨10.1103/PhysRevD.101.063513⟩
Digital.CSIC. Repositorio Institucional del CSIC
instname
Physical Review D
Physical Review D, American Physical Society, 2020, 101 (6), pp.063513. ⟨10.1103/PhysRevD.101.063513⟩
ISSN: 1550-7998
1550-2368
DOI: 10.1103/PhysRevD.101.063513⟩
Popis: In this work, we investigate cosmologies where the gravitational constant varies in time, with the aim of explaining the accelerated expansion without a cosmological constant. We achieve this by considering a phenomenological extension to general relativity, modifying Einstein's field equations such that $G$ is a function of time, $G(t)$, and we preserve the geometrical consistency (Bianchi identity) together with the usual conservation of energy by introducing a new tensor field to the equations. In order to have concrete expressions to compare with cosmological data, we posit additional properties to this tensor field, in a way that it can be interpreted as a response of spacetime to a variation of $G$. Namely, we require that the energy this tensor represents is nonzero only when there is a time variation of $G$, and its energy depends on the scale factor only because of its coupling to $G$ and the matter and radiation energy densities. Focusing on the accelerated expansion period, we use type Ia supernovae and baryon acoustic oscillation data to determine the best fit of the cosmological parameters as well as the required variation in the gravitational constant. As a result, we find that it is possible to explain the accelerated expansion of the Universe with a variation of $G$ and no cosmological constant. The obtained variation of $G$ stays under 10 \% of its current value in the investigated redshift range and it is consistent with the local observations of $\dot{G}/G$.
9 pages, 2 figures, Phys. Rev. D Published in 12 March 2020 - https://link.aps.org/doi/10.1103/PhysRevD.101.063513
Databáze: OpenAIRE